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The paper presents a comprehensive examination of self-similar blast waves with 
respect to two parameters, one describing the front velocity and the other the 
variation of the ambient density immediately ahead of the front. All possible 
front trajectories are taken into account, including limiting cases of the ex- 
ponential and logarithmic form. The structure of the waves is analysed by means 
of a phase plane defined in terms of two reduced co-ordinates F = (t/r,u) u and 
2 = [(t/rp)aI2, where t and r are the independent (time and space) variables, 
p = dlnr,/dlnt,, the subscript n denoting the co-ordinates of the front, and 
u and a are, respectively, the particle velocity and the speed of sound. Loci of 
extrema of the integral curves in the phase plane are traced and loci of singularities 
are determined on the basis of their intersections. Boundary conditions are 
introduced for the case when the medium into which the waves propagate is at 
rest. Representative solutions, pertaining to all the possible cases of blast waves 
bounded by shock fronts propagating into an atmosphere of uniform density, 
are obtained by evaluating the integral curves and determining the corresponding 
profiles of the gasdynamic parameters. Particular examples of integral curves 
for waves bounded by detonations are given and all the degenerate solutions, 
corresponding to cases where the integral curve is reduced to a point, are 
delineated. 

1. Introduction 
The concept of self-similarity has played a key role in the development of 

blast-wave theory. There were, of course, some good reasons for this: basic 
studies in this field were prompted by the interest in strong explosions, notably 
those due to atom bombs, and self-similar solutions apply particularly well to  
such cases; the concept of self-similarity results directly from dimensional 
analysis, the obvious first step in treating a new class of physical problems, and 
it yields most readily information on the salient properties of the phenomena 
under study, an obvious objective for an initial investigation. Thus the postulate 
of self-similarity formed the basis for all the classical papers (Von Neumann 
1941; Taylor 1941; Sedov 1945), all the early studies (Taylor 1946; Sedov 1946; 
Stanyukovich 1946) and all the texts in this field (Courant & Friedrichs 1948; 
Sedov 1957; Stanyukovich 1955; Korobeinikov et al. 1961; Zel’dovich & Raizer 
1966). Using this formulation, a great variety of problems, concerning both 
explosions and implosions, were treated by many investigators (Krasheninnikova 
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1955; Grodzovskii 1956; Rogers 1958; Grigorian 1958a, b;  Kochina & Mel’nikova 
1960) with the majority of publications being in the Soviet literature. A notable 
exception in this respect is the classical paper, on the self-similar strong free 
implosion, of Guderley (1942), followed by refinements contributed by Butler 
(1954), Bruslinskii & Kazdan (1963) and by Lee (1967). 

It is important to note that all these investigations were restricted to the con- 
sideration of purely inertial effects, so that the medium was assumed to be 
essentially inviscidand behave as a perfect gas with constant specific heats, while 
the flow field was considered to be adiabatic. The purpose of this paper is to give 
a synthetic view of such self-similar flow fields with the above restrictions, but 
with a particular emphasis given to the physical meaning of the theory. In  this 
connexion we present here salient properties of solutions depending on the values 
of two physically significant parameters: one describing the motion of the front 
and the other the variation in the ambient density of the medium into which the 
wave propagates. 

2. Co-ordinates and parameters 
In  contrast to the conventional approach based on the dimensional analysis, 

the concept of self-similarity is treated here as a consequence of the reduction 
of partial differential equations expressing the conservation principles for blast 
waves to ordinary differential equations. Blast-wave equations in their general 
form were given in our earlier paper (Oppenheim et al. 1971), where they were 
formulated with respect to three fundamental systems of co-ordinates: the 
Eulerian space, Eulerian time and Lagrangian time systems. 

The independent variables were expressed for this purpose in terms of the 
appropriate field co-ordinates 

x = r/rn, r = t/tn (1) 

where r and t are the physical space and time variables, the subscript n refers 
to an arbitrary point on the trajectory of the front and the subscript 0 denotes 
a fixed reference point on this trajectory. Both explosions and implosions are 
included, as illustrated in figure 1. Here # denotes lines of constant fieId co- 
ordinatest and rn the particle path; as a consequence of the definitions in (1) the 
front of the wave corresponds to # = 1, while the piston trajectory is given by 
a particular value of # = #p which coincides with a particle path starting at the 
centre for explosions or at infinity for implosions. The Eulerian space profiles 
are referred to the abscissa t = t ,  (ie. r = l) ,  the Eulerian time profiles are taken 
along the ordinate r = r, (i.e. x = 1) and the Lagrangian time profiles describe 
the variation of the gasdynamic parameters as a function of time along the 
particle path 71. 

t In this paper this becomes, in fact, the self-similarity variable q5 x/i-iIl, where p is the 
velocity index defined in equation (5) .  
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FIGURE 1. Blast-wave co-ordinates for explosions and implosions. 

The reduction to ordinary differential equations is accomplished here by 
demanding that the flow field contains no sources and by annihilating the 
dependence on the front co-ordinates, defhed by (2). Since, in the absence of 
sources, blast-wave equations are essentially autonomous in 4,  in order to satisfy 
this requirement it is sufficient to eliminate all the terms containing partial 
derivatives with respect to the front co-ordinate, while the total derivatives with 
respect to this co-ordinate can be retained only if they are constant. 

By observing that, by definition, the front of the blast wave is a gasdynamic 
discontinuity, we see that the only way its motion can affect the flow field is by 
the variation in its velocity of propagation W, or in the Mach number M,. Thus, 
if the velocity of sound in the ambient atmosphere is constant, this property is 
appropriately simulated by expressing the partial derivatives with respect to 
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the front co-ordinate in terms of the transformation 
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dlnw, dlny 
-2- = - 

dlnr, dlnE’ 

where y = M i 2  and 
(3) 

the latter being usually referred to as the decay parameter. 

ordinates the only other term involving the total derivative is 
In  the blast-wave equations expressed in terms of the Eulerian space co- 

8 = - d In p,/d In 5, (4) 

where pa is the ambient density immediately ahead of the front. 
Thus, conservation equations for blast waves are reduced to ordinary dif- 

ferential equations if, in the case of flow without sources and a constant velocity 
of sound in the ambient atmosphere, one has either (i) y = 0, h = constant and 
thus variable front velocity corresponding to the so-called zero counterpressure 
or cold atmosphere condition, or (ii) h = 0, that is, constant front velocity and 
hence y = constant. Under the above restrictions, the variation of ambient 
density can be taken into account in both cases provided that, with reference 
to (4), w = constant. 

Conventionally, for self-similar blast waves the motion of the front is expressed 
in terms of the velocity index 

dIn< dlnr, - t ,  ,us---=- - -w,. 
d l n r  dlnt, r, 

This parameter is related to A. Note that (3) can be transformed as follows: 

- d In (~ , /wo)  - d 
- - -  
2 dint 

where p,, = ,u a t  < = 7 = 1, hence 

(5) 

The conventional form of self-similar blast waves, as obtained directly from the 
dimensional analysis, is associated with the condition of p = constant. From (7) 
it follows that in this case h = constant, corresponding to the aforementioned 
condition (i). I n  this case the front trajectory in the time-space domain can be 
determined immediately from ( 5 ) ,  which yields simply 

6 = ?y. (8) 

Self-similar blast waves associated with p = constant cover, of course, most of 
the practical applications. There are, however, two interesting exceptions which 
correspond to h = - 2  and h = 00, when the blast-wave equations can acquire 
less conventional, limiting forms, first observed by Grigorian (1958b). 
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FIGURE 2 .  Front trajectories in the time-space domain. Broken lines depict 
the limiting cases of exponential and logarithmic trajectories. 

The condition h = - 2  yields, in the case p = constant, p = 00. One can, 
however, obtain a limiting form for self-similar blast waves for this value of h 
by allowing p to  be variable. Equation (7 )  then becomes 

dlnp/dln[ = l / p ,  (9) 

whence P = po+In5 (10) 

5 = exp rpO(7 - 1)1. (11) 

and, by virtue of (5), the front trajectory is described by the exponential 

The condition of h = 00 corresponds, in the case of p = constant, to p = 0. 
Now, however, h can be eliminated from (7) by letting h = 2/p. At the same time, 
as it will be demonstrated later,t h is also eliminated from all the governing 
equations. In such circumstances (7) yields 

whence 

t See equations ( 2 5 a ) ,  (26a)  and (28a). 
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5 = l+polny  (14) 

for the front trajectory. I n  fact it is this limiting case that was exploited for the 
treatment of blast waves in exponential atmospheres, as described by Zel’dovich 
& Raizer (1966) and subsequently refined by Hayes (1968). 

The parametric study presented here covers all possible values of h and p for 
the case when the medium into which the blast wave propagates is at rest. 
Representative cases of front trajectories considered under such circumstances 
are shown in figure. 2. The conventional cases associated with ,u = constant are 
represented by continuous lines, while the two limiting cases are demonstrated 
by broken lines and correspond to the particular value p, = 1. 

3. Governing equations 

ratios y ,  so that 

the most concise form of blast-wave equations is obtained, as demonstrated by 
Oppenheim et al. (1971), by using the reduced variables 

By restricting the scope of the theory to gases with constant specific heat 

r = pa2/p = y = constant, (15) 

where u is the particle velocity and a is the local velocity of sound.? 
Moreover, as a consequence of the restrictions imposed by the self-similarity 

requirements discussed in the previous section, blast-wave equations for all 
the three fundamental systems of co-ordinates considered in our previous paper 
(Oppenheim et al. 1971) can be expressed in terms of a single set by the intro- 
duction of the self-similar variable 

qi _= x/r”, (17)  

reflecting the fact that, as it is apparent from dimensional considerations, a self- 
similar flow field in one co-ordinate system is self-similar in any other system. 
The transformation formulae for this purpose are 

d d i d  1 d 
dln$ dlnx p d l n r  (I-P)pudln.r 

for the Eulerian space, Eulerian time, and Lagrangian time systems respectively. 
The basis for the first two is straightforward; we use the relation r = 1 for the 
first and x = 1 for the second. The third, however, also involves the use of the 
kinematic relation expressing the fact that the particle velocity is the slope of 
the line of constant Lagrangian co-ordinate in the time-space domain. 

I n  the limiting case of an exponential front trajectory ( A  = - 2) the equation 
of the trajectory of a constant field co-ordinate has the form of equation (1 1) .  

t It should be noted that for convenience the parameter 2 is defined here so that it is y 
times larger than the parameter 2 of Oppenheim et al. (1971). 

(18) - = - = = - 
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The solution is obtained here first in terms of Eulerian space profiles, the trans- 
formation to time profiles being given by the relation 

I 

PO 
7 = l---lnz. 

In  the limiting case of a logarithmic front trajectory ( A  = 00) the equation of 
the trajectory of a constant field co-ordinate has the form of equation (14). In  
this case the solution is obtained first in terms of Eulerian time profiles, the 
transformation to space profiles being obtained by using the relation 

x = 1-p01n7. (20) 
In  such circumstances the fundamental equations for self-similar blast waves 

can be expressed in terms of the following autonomous forms: 

and 

whence (23) 

Here, B(P ,Z)  Z-( l -F)’ ,  (24) 

Q(P, 2) _= ( j  + 1) ( F  - b )  2- (a - F )  (1  -2’) P, (25) 

P ( F ,  2) a ( c  - F )  D(F ,  z) + (y - 1 )  &(F, Z), (26) 

(27) 
a = ( j + l ) ( y - 1 ) + 2  

with u z +(h+2), b = ( h + w ) / ( j +  l ) y ,  c = (h+Z)/a, 

and j = 0,  I, 2 for plane, line and point symmetrical flow fields respectively.? 

introduce ,@ = Z-l, in terms of which (21) ,  (22) and (23) become 
In order to explore the behaviour of solutions at Z = co it is convenient to 

a2 ,@ P ( F , B )  -=----- 
dF I - F &F, &) ’ 

while (24), (25) and (26) become, respectively, 

B ( F ,  &) = $D(F, 2) = 1 - 2( 1 - F)2 ,  

&F, &) = &&(F, 2) = (j+ 1) ( F  - b )  - i ( a - F )  (1 - F )  F ,  

P(P, $) = 2 P ( F ,  2) = a(c -J’) B ( F ,  &) + (7 - 1) O(F, 2). 

( 2 4 4  

(25 a) 

(26 a)  

f It should be noted that, again for convenience, D is defined here as the negative 
of the function D in the paper of Oppenheim et aE. (1971). 



664 A .  K .  Oppenheim, A .  L. Kuhl, E .  A .  Lundstrom and H .  1M. Kame1 

P 
P i  
- 

P 
Pi 
- 

T - 
Ti 

Eulerian space 

1 

Eulerian time 

1 

TABLE 1. Profiles of gasdynamic parameters 

At the same time the remaining two autonomous equations of Oppenheim et al. 
(197 1) can be integrated, yielding the so-called adiabatic integral 

where 
A - ( y -  l ) w  
j+l--w ) 

v -  

which is valid along any line of constant field co-ordinate. Thus, in the above 
form, (28) applies to the Enlerian space profiles; for the Eulerian time profiles 
x = 1, while for the Lagrangian time profiles the right-hand side is unity. 

The D = 0 parabola represents the locus of states for which the line of a 
constant field co-ordinate coincides with a characteristic, that is when the con- 
dition (&/at), = u - t a  is satisfied. This fact becomes immediately evident by 
observing that at I$ = constant, we have x = constant and r = constant so that, 
by virtue of the definitions of (1) and (18), the aforementioned condition yields 
the D = 0 relationship according to (24). 

Relations equivalent to (21)-(28) are, of course, well known fi-om the literature 
(Sedov 1957; Korobeinikov, Mel'nikova & Ryazanov 1961). However, they are 
presented here in a more concise form, making them especially amenable to the 
parametric study of their properties with respect to h and w that forms the 
primary objective of this paper. As becomes evident from these equations, the 
solution is governed by a single differential equation, equation (23), relating 
the reduced variables F and 2. These variables represent, therefore, the co- 
ordinates of the phase plane. Once an integral curve on this plane is determined, 
all the other variables can be evaluated by the quadrature of (21) or (22) and 
from the algebraic relation given by (28). The resulting expressions for all the 
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profiles of the gasdynamic parameters of the flow field are presented, with 
reference to the three fundamental systems of co-ordinates, in table 1. 

With respect to the limiting cases, the condition of h = - 2, corresponding to 
the exponential front trajectory, does not introduce any anomaly in the governing 
equations for the Eulerian space profiles. For this case one can thus take simply 
$ = x and the transformation to time profiles can be obtained by the use of (19). 

In  contrast to this the limiting case of h = co, corresponding to the logarithmic 
front trajectory, is governed in principle by the time profiles. Hence one now 
has to take f i s t  $ = 7 - p ;  the space profiles are then obtained by using (20). 
With this provision, the governing equations (21), (22) and (23), are directly 
applicable to this case while (25), (26) and (28) are, respectively, simplified to 

1 

PY 
Q*(P,Z) = -- [22+y(I -P)P] ,  

I Y-1 P*(F, 2)  = - 2D(F, 2) - - {22 + y( 1 -P) P) 
P " Y 

The latter yields directly the density profile in Eulerian time, which, as pointed 
out earlier, is the primary system of reference for this case. 

4. Properties of the phase plane 
Properties of integral curves on the phase plane for self-similar blast waves 

were a subject of extensive studies in the nineteen fifties. They were summarized 
in the text of Sedov (1957), where one can find a number of examples of sets of 
integral curves for some representative values of the velocity parameter ,u 
(denoted by 6 by Sedov) and the ambient density parameter w .  

In  order to achieve a comprehensive coverage of this field, instead of being 
concerned with the particular forms of the integral curves which, in view of 
previous studies, should in any case be considered as generally known, it is more 
advantageous, now, to examine the loci of their singularities. This is accomplished 
here by the investigation of the geometrical properties of the loci of extrema in 
the phase plane, following, in fact, a technique that in recent times has been found 
particularly useful for the exposition of the salient features of systems governed 
by nonlinear ordinary differential equations, as demonstrated in the text of 
Haag (1962). 

As is evident from (23), the minima and maxima of the integral curves lie 
(i) with respect to P: on the P = 1 ordinate, or on the Q = 0 line, (ii) with respect 
to 2: on the Z = 0 axis, at Z = co, or on the P = 0 line. Hence, besides two fixed 
singular points at 3' = 1, namely at 2 = 0 according to (23) and at  Z = co 
according to (23 a) ,  the rest of the singularities involve the conditions Q = 0 and/or 
P = 0. Properties on the loci of points satisfying these conditions are therefore 
investigated in detail. A full list of the physically significant singularities is given 
in table 2. 
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Nomen- 
Co-ordinates clature 

A Singu- r , of 
larity Condition F 2 Sedov 

A 

G 

B 

D 

F 

0 

C 
H 

E 
I 

P = 0,Q = 0, D = 0 (1 -FA)' 

- [3A2+r+1)'--] h+w Q 

DY 3Y 

+ - h - + 7 + 1 ) 2 - h y 4  2-y w [:! 2JY 3Y 

P = 0 , Q  = 0 , D  $; 0 c = ( h + 2 ) / a  

( ~ - F B ) P ~  
X ( j -  1)&3+2--0 

A h 

Q = O , Z = O  b = ( h + w ) / ( j +  1 ) y  ca 

Q = 0,z = 0 a = +(h+2) 0 

F = O , Z = O  0 0 

P = l , Z = O  1 0 

P = O , F = l  1 Any value of Z 

P = O ,  P = l  1 00 

P=ca,Z=Co f a  +a 

if h = ( y -  1 ) w  
A 

TABLE 2. Singularities in the phase plane 

A 

- 

B or E 

D 

F 

0 

C 
- 

& 

G 

Lines Q = constant are given by 

Lines P = constant are expressed by 

(30)  
(1 -P) [ (y-  1) ( a - F )  F+a(c -F)  (1 - F ) ]  + P z =  

(j+ 1) (y-  1) (T-b)+a(c-T)  

For the case of h = co, the equations for the Q* = constant and P* = constant 
lines are reduced, respectively, to 

and 

According to (26), the D = 0 line has the property that its intersection with a 
Q = 0 line satisfies the condition of P = 0. It is, therefore, a locus of singularities, 
i.e. points A and G in table 2,  the latter corresponding to the famous Guderley 
solution for a front-driven implosion into vacuum. The co-ordinates of these 
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P 

FIGURE 3. Illustration of the relationship between the loci of extrema and singularities in the 
phase plane. The sketch demonstrates in particular the reason why the A singularity must be 
a node if the G singularity is a saddle point. The B singularity obtained by another inter- 
section of the same Q = 0 and P = 0 lines below point G has to.be, by the same token, a node. 

points given in table 2 have been obtained, in fact, by the solution of (24) and 
(29) for Q = 0. Point G is a saddle point for which the Guderley solution is the 
axis passing through the origin. As depicted on figure 3, the other axis must 
pass through, and be shared by, the singularity A .  Moreover, as becomes evident 
from figure 3, this singularity must be then a node since, from purely geometrical 
considerations, two adjoint intersections of the same loci of extrema can occur 
only if one is a saddle point and the other is a node (see comments on figure 35 
in the text of Haag (1962)). 

If D + 0,  then, as is apparent from (26), the condition Q = 0 corresponds to 
P = 0, provided that F = c .  It then follows from the definition (27) that the 
decay parameter can be expressed in terms of F by the relation h = LXF - 2. 
This parameter can therefore be eliminated from (29), yielding 

B(F ,  2)  ((j - 1)P+ 2 - w ) Z  - Q(j+ l)y(y- 1) (1 -P) P2 = 0. (31) 

The singularities whose locus is given here by the condition B(F ,Z)  = 0 were 
denoted in the text of Sedov (1957) by the letter B. 

The remaining singularities of table 2 are situated either on the F = 0 axis 
and F = 1 ordinate or on the 2 = 0 axis and at 2 = co. Their co-ordinates are 
obtained from the appropriate expressions for the zeros and poles of the Q = 0 
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Con- 
dition Equation F ( 2  = co) P(2 = 0 )  

0 , 1 o r a = & ( h + 2 )  

P = O  Z = ( l - F )  

h+2  w - 2  

2 CL j - 1  
- 0 or 1 (.i + 1) Y ( Y  - 1 )  B = O  Z =  

( l -F )FZ  
(3 - 1 ) F + 2 - w  

x .  

TABLE 3. Properties of the lines P = 0, Q = 0 ,  D = 0 and B = 0 

0 0 2  0.4 0.6 0.8 1.0 
F 

FIGURE 4. Loci of extrema and of singularities in the phase plane (j = 2 ,  y = 1.4). -, P = 0 
lines; ---, Q = 0 lines; 0, singular points obtained by intersections of the appropriate 
loci of extrema; + , strong-shock boundary condition. (a )  Uniform-density atmosphere, 
curves labolled with values of the decay parameter A. ( b )  Constant front velocity m-avcs, 
curves labelled with values of tho atmospheric density parameter w. ( c )  Constant-energy 
waves, curves labelled with values of w. 

For figures 4 ( b )  and (c) see facing page. 
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1 .(I 

0.8 

0.6 

z 

0.4 

0.2 

1.0 

0.8 

0.6 

z 

0.4 

0.2 

Q(4.2) = 0 
5 

P(O)=O 

\ 

0 0.2 0.4 0.6 
P 

0.8 1 .o 

Q(-w)=O 
/ 

P(2.1429) = 0 
/ 

0 0.2 0.4 0.6 0.8 1 .o 
P 

FIGURES 4 ( b )  and (c). 
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and P = 0 lines, which, one should note, are poles and zeros for the Q = 0 and 
P = 0 lines. These are listed in table 3. 

Loci of the Q = 0 and P = 0 lines are presented in figures 4(a) ,  ( 6 )  and ( c ) ,  
corresponding, respectively, to the following three cases: (i) waves of variable 
front velocity in an atmosphere of uniform density, i.e. h + 0, w = 0, (ii) waves 
of constant front velocity in an atmosphere of variable density, i.e. h = 0, 
w =t= 0, (iii) waves of constant energy in an atmosphere of variable density, i.e. 
h = j + 1 - w (the relationship which, as is immediately evident from equation (16) 
in the paper of Oppenheim et al. (1971)) reduces the energy equation, under the 
aforementioned self-similarity restrictions, to a constant-energy condition). All 
the diagrams have been computed for y = 1-4. The Q = 0 lines are represented 
by broken lines, while the P = 0 lines are continuous. In  figure 4(a)  each line 
is labelled by the value of A, while in figures 4 ( 6 )  and ( c )  curves are labelled by the 
value of w .  The loci of singularities associated with the intersections of the 
Q = 0 lines with the P = 0 lines, namely the D = 0 parabola and the B = 0 
curve, are represented in all the diagrams by heavy lines. Typical singularities 
corresponding to the same fixed values of the parameter h or w are indicated by 
circles. The cross denotes the strong-shock boundary condition (see figure 6). 
The A and G singularities marked in figure 4(a) correspond to the h of the 
Guderley solution, that is, the integral curve passing from the strong shock 
boundary condition to the origin. The value of h, given in figure 4(a )  is that 
obtained by Lee (1967); the co-ordinates of points A and G are then given by the 
appropriate expressions in table 2 .  

It should be observed that the functions D(F,  Z ) ,  Q(F,  2) and P ( F ,  2) have 
been defined here so that they are positive for Z > Z ( D  = 0) ,  Z > Z(Q = 0) and 
2 > Z(P = 0). Taking this into account, one can deduce from (21) and ( 2 2 )  the 
direction corresponding to an increasing value of the self-similar field co-ordinate 
q!~ for any integral curve, as it has been done, for instance, in figure 7, where such 
directions have been indicated by arrows. Thus integral curves with arrows 
pointing towards the point corresponding to conditions at  the front represent 
explosions and those with arrows pointing in the opposite direction represent 
implosions. 

Of particular interest are the cases when the P = 0 or Q = 0 lines are vertical. 
Since their equations are then satisfied for any value of 2, they correspond to 
the conditions of coincidence between the zeros and the poles of table 3. The 
expressions for the parameters h and w and the values of the co-ordinate F 
corresponding to these cases are given in table 4. The corresponding lines are 
easily identifiable on figures 4(a) ,  (b)  and ( c ) .  If such a line for P = 0 coincides 
with the ordinate F = 1, it  becomes a locus of singularities. This is indeed the 
case for the conditions of the first, third and seventh column of table 4. The 
singularity situated on this line is then a saddle point (see figure 5) and the 
F = 1 ordinate is one of its axes. The other axis is determined by the appropriate 
integral curve, that is, one for h = 0 in figure 4(a ) ,  for w = 0 in figure 4 ( b ) ,  and 
for w = (j+ I)/y in figure 4(c). 

As is apparent from table 2, the positions of the first five singularities depend 
on the values of the parameters h and w.  The phase plane co-ordinate F for these 
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-2 - 1  0 1 2 3 4 5 6 '7 8 9 10 
h (for w = 0) 

w (for h = O,j+ 1-0) 

FIGURE 5 .  Phase plane co-ordinate P for non-fixed singularities as a function of the para- 
meters h and w .  - , singularity A ;  ---, G; ---, B; --a-, D ;  -. .- , p. 

Figure 4(a )  Figure 4 ( 6 )  Figure 4 (c )  
& & I  

L > 

w 0 0 0 (j+l)r 2 -a (j+l)/r j + 3 - 2 / ~  
h 0 (j+l)r 0 0 0 j+ l -0  j+l-w j+l--0 

1/r - 0 - P(Q = 0 )  0 1 0 1 
F ( P =  0) 1 - lir - 1 - - 1 

TABLE 4. Cases for which the loci of extrema are satisfied for any value of 2 

singularities is shown plotted as a function of h and w in figure 5 for the case of 
spherical waves in a perfect gas with y = 1.4. 

5. Boundary conditions 
In  this paper we restrict our attention to the physically most prevalent situa- 

tions which, with reference to boundary conditions, is tantamount to limiting 
ourselves to the case where the atmosphere into which the wave propagates is 
at rest. 

For a gas with y = constant the phase plane co-ordinates of the points repre- 
senting the boundary conditions can be expressed in terms of the following 
relations (see Oppenheim et al. 1971): 

and 

2 P-P, 
y + l  p + p  

F,= -- (32) 

(33) 
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where p = (y  - l)/(y + 1)) P = pn/pa, p being the pressure, subscript n denoting 
conditions immediately behind the shock front and subscript a referring to the 
state of the ambient atmosphere. 

is the pressure ratio attained by the process of the deposition in the gas of energy q 
per unit mass at constant volume and vF is the specific volume ratio for the 
corresponding process a t  constant pressure. 

By eliminating P from (32 )  and (33 )  one obtains the following equation for 
the Hugoniot curve in the phase plane: 

which for PG = 1 reduces to the Rankine-Hugoniot relation 

zn = Q ( Y - 1 )  (Fn+'/(y-1))  ('-GI* ( 3 5 4  

For PG = 00, corresponding to  the case of cold atmosphere or zero-count,er- 
pressure, it becomes simply 

8, = y(l-Fn)Fn. (35b)  

ylM; = ( P - l ) / ( l - v ) ,  (36 )  

At the same time the equation of the Rayleigh line, 

where Mn is the front Mach number and v = p,/p,, can be transformed by using 
the definitions of (16) and noting that, on the basis of the continuity equation, 
F, = I-vinto 

z n  = (Zu+YFn) (1-&,), ( 3 6 4  

where 2, = 1/x; = y. (37) 

It is of interest to note that for the case of 8, = y = 0 the Rayleigh line in the 
phase plane coincides with the Hugoniot curve for Pc = co. 

The intersections between the Rayleigh lines and the Hugoniot curves are 
given by the expression 

which, for the intersections with the Rankine-Hugoniot curve, is reduced to 

Kl = 2(1 +Y). ( 3 8 a )  

Plots of the Hugoniot curves and the Rayleigh lines are presented for the case of 
y = 1.4 in figure 6 .  The D = 0 line, representing in this case the locus of the 
Chapman-Jouguet conditions, is shown there by a broken line. 

All the integral curves representing a blast wave whose front is a discontinuity 
that propagates into an atmosphere a t  rest must pass through the region bounded 
by the two extreme Hugoniot curves, namely those corresponding to Pc = 1 
(Rankine-Hugoniot) on one side and PG = 00 on the other. I n  this connexion it 
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0 0.2 0.4 0 6  0.8 1.0 

F 

FIGURE 6. Loci of states immediately behind fronts propagating into a medium at rest 
(y  = 1.4). The physically realizable cases for combustion systems are restricted to the area 
bounded by the Rankine-Hugoniot curve, the PG = co line and the D = 0 parabola. 

is of interest to note how rapidly an increase in the value of Pa causes the 
Hugoniot curves to approach the case of Pa = co, the curve corresponding to 
Pa = 10 being practically coincident with this limit. 

The D = 0 parabola represents the locus of the Chapman-Jouguet conditions 
and it separates the regions of strong detonations on the right from weak detona- 
tions on the left. Since in the course of chemical explosions weak detonations may 
not be sustained, the most physically relevant extent of boundary conditions is 
in this case confined to the small region between this line and the Rankine- 
Hugoniot curve. Moreover, in order to satisfy the self-similarity requirements, 
this region can be considered as a locus of boundary conditions only for constant- 
velocity blast waves (i.e. just for h = 0 )  in the case of uniform velocity of sound 
in the ambient atmosphere, that is, if w = 0 or, i f w  =f= 0, whenpa cc pa. Otherwise 
only the Pa = co line can be admitted as the locus of boundary conditions at the 
fronts of self-similar blast waves. 

6. Wave structure 
As an illustration of the structure of self-similar waves, a complete set of 

solutions is presented here for the shock-bounded case corresponding to o = 0. 
The only admissible boundary condition is then that associated with y = 0 or 

43 F L M  52 



674 A .  K .  Oppenheim, A .  L. Kuhl, E.  A .  Lundstrom and M .  M .  Kame1 

FIGURE 7. Integral curves in the phase plane for waves bounded by a strong-shock front 
moving into a uniform-density atmosphere at  rest ( j  = 2 ,  y = 1.4). Arrows denote the direc- 
tion of increasing x; integral curves for which they point towards the point representing the 
boundary condition correspond to explosions, those for which they point in the opposite 
direction correspond to implosions. Front trajectories for the solutions presented here are 
depicted on figure 2 .  

PG = CQ. According to ( 3 8 a )  and (35b) ,  all the integral curves have, therefore, to 
pass through the point 

(39)  
2Y(Y - 1) 2, = Pn = - 

y + i 7  (Y + * 

2 

A set of integral curves satisfying this requirement is shown for the case o f j  = 2 
and y = 1.4 in figure 7 and the corresponding velocity, density, pressure and 
temperature (or sound speed) profiles in the Eulerian-space co-ordinates are 
given in figures 8, 9, 10 and 11 respectively. The best known of the solutions 
shown on these graphs is that corresponding to the blast wave of constant energy 
of value one for 

h = j + l - w ,  (40) 

when, as pointed out earlier, the differential energy equation can be integrated 
immediately, yielding the constant-energy condition. 

By using (40) and noting that the expression for the locus of singularities B, 
equation (31 ) ,  corresponds to h = aF-2 ,  the B = 0 line can be expressed in 
terms of the relation 

y-  1 (1-P)PZ z=-  
2 F -  117 

This equation satisfied the strong-shock boundary condition (39) and is also a par- 
ticular solution of the governing differential equation (23).  Thus the locus of 
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singularities B in figure 4 (c) is at the same time an integral curve and the solution 
of the constant-energy self-similar blast wave in figure 7: a remarkable co- 
incidence! As a consequence of this, the structure of the blast wave can be 
expressed in terms of an algebraic solution. Thus, taking into account (41), (21) 
becomes 

yielding 

where 
7 - l  d 2 = -  2 + ( y + l ) ( y c - 2 ) c  d, = 

a(yc - 1) ’ ac(yc - 1) 

(43) 

Equations (41) and (43) describe completely the structure of the wave in 
terms of the co-ordinate F and on the basis of these equations, profiles of all the 
gasdynamic parameters can be obtained from the expressions given in table 1.  

Under the conditions of figure 7 ,  the integral curve representing the constant- 
energy blast wave corresponds to h = 3. The curves corresponding to 0 < h < 3, 
i.e. those in sector (1) of figure 7, pass through singularity E (F  = 1, 2 = co). 
They represent, therefore, blast waves driven by a piston a t  infinite temperature. 
The curve for the case h = 0, corresponding to a piston driven wave of constant 
front velocity passes through singularity H ,  a saddle point, and it thus separates 
this set of solutions from that converging upon the singularity C (P = 1 , Z  = 0). 
For - 00 < h < 0, in sectors (2) and (3) of figure 7, the integral curves represent 
explosions driven by a piston at zero velocity of sound (or temperature). The 
two sectors are separated by the integral curve for h = - 2 which, as was dis- 
cussed above, can be considered as a limiting case of an exponential front 
trajectory. The curve corresponding to h = co can also be considered to represent 
the limiting case of a logarithmic front trajectory. Solutions for this case can be 
obtained by using (25b), (26b) and (28a). 

Integral curves on the left of the h = 00 line in sector (4) represent implosions 
driven by a piston at infinity, while the zero velocity of sound condition is still 
retained. The curve for h = a- 2 = (j+ 1) (y -  l), i.e. h = 1-2 in figure 7, corre- 
sponds to the case where the condition B(P, 2) = 0 of (31) is satisfied at P = 1. 
It terminates, therefore, at a singular point corresponding to a finite velocity 
of sound (or temperature). For h, < h < (j + 1) (y  - l), in sector (5), the integral 
curves terminate at the B singularity, and 2 > 0 and F < 1. This corresponds 
t o  conditions at infinity, where both the temperature and the velocity are infinite, 
but the particle path does not coincide with the trajectory of a constant field 
co-ordinate, i.e. the waves are not piston driven. 

Sector ( 5 )  in figure 7 is bounded by the curvilinear axis of the Guderley 
singularity: a saddle point. By virtue of the fact that at this point the two pairs 
of functions Q(F, 2) and D(F,  2) in (21), and P(P, 2) and D(F,  2) in (22) change 
signs, the integral curve passing through this singularity is associated with 
monotonic variation of the field co-ordinate across it. This curve represents, 
therefore, a physically meaningful solution leading to the singular point 
0 (F  = 0, 2 = 0) ,  where, both the particle velocity and the velocity of 
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sound can have finite values at infinity. In  sector ( 6 ) ,  between the lines corre- 
sponding to the constant-energy explosion and the Guderley implosion, integral 
curves have no physical meaning since, as is demonstrated by the broken lines 
in figures 8-11, as a consequence of the intersection with the D = 0 line the 
gasdynamic parameters of the flow field become double-valued functions of the 
field co-ordinate. 

The front trajectories for all the solutions represented in figure 7 have been 
depicted in figure 2,  while all the information on the structure is given by the 
profiles of the gasdynamic parameters presented in figures 8-1 1, where, incident- 
ally, the explosions are clearly differentiated from implosions by the fact that 
for the former x < 1 while for the latter x > 1.  

Inserts in figures 8-11 give solutions for the limiting case corresponding to 
h = 00, that is for blast waves with logarithmic trajectories. They were obtained 
by the use of the transformation prescribed by (20). As pointed out before, the 
limiting case corresponding to h = -2,  associated with blast waves with ex- 
ponential trajectories, does not involve any anomaly in the Eulerian space 
system of reference. Thus the solutions of figures 7-11 represent a complete set 
of all possible cases that can occur for self-similar blast waves bounded by shock 
fronts in an atmosphere of uniform density, including the limiting cases of 
logarithmic and exponential trajectories. 

A similarly complete coverage can, of course, be obtained for any other point 
on the P, = co line. A representative solution for one of such cases has been 
obtained recently by Champetier, Couairon & Vendenboomgaerde (1968) and 
by Wilson & Turcotte (1970) with reference to blast waves driven by laser irra- 
diation. Assuming that in this case the wave receives energy at a constant 
power level, p ,  they postulated on the basis of a dimensional argument that the 
front trajectory is then prescribed by a power law of the type given in (8) with 
p p  = g. From (7 )  it follows then that A, = $. The corresponding integral curve, 
obtained by using (23a), is shown in figure 12. Such solutions terminate with 
h = at the point of intersection between P, = co curve and the D = 0 line (the 
boundary condition of the strong Chapman-Jouguet detonation), which for this 
value of h represents also the position of singularity A .  Under such circum- 
stances one can have a degenerate solution. 

In  general, degenerate solutions can occur when, as it has been pointed out 
by Sedov (1957), the point specifying the boundary condition coincides with 
a singularity. Besides the integral curve, this point can be considered to represent 
also a solution, so that the wave structure may correspond then to the condition 
F = Fn = constant and 8 = 8, = constant. In  table 1 all the terms involving 
P and 8 are, under such circumstances, reduced to unity and the profiles of the 
gasdynamic parameters then become simple powers of the field co-ordinate. In  
figure 12 the loci of all the points that can be considered as degenerate solutions 
are represented by heavy line segments with limits delineated by the appropriate 
B = 0 lines. 

In  the case of h = 0, degnerate solutions can be obtained either if the boundary 
condition coincides with singularity A on the D = 0 curve or with singularity B 
on the B = 0 line at  P = 2/a (or F = 0-625 for j = 2 and y = 1.4). The range 
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0.8 

0.6 

2 

0.4 

0.2 

B=O 
(A=j+ 1 - w )  

0 0.2 0.4 0-6 0.8 1 .o 
P 

FIGURE 12. Integral curves representing particular solutions of waves bounded by detona- 
tion fronts and loci of degenerate solutions. Also shown are the B = 0 lines passing through 
the points representing the extreme cases of the degenerate solutions. Arrows denote the 
direction of increasing x. 

within which singularity A can represent a degenerate solution is bounded by 
the weak discontinuity at P = 0,  2 = 1 on one side and the CJ, point on the 
other, corresponding to w = 0 and w = j y / ( y  + I) ,  respectively (or 0 < w < for 
j = 2 and y = 1.4). The segment of the B = 0 line that can serve the same purpose 
is bounded by the PG = 03 parabola and the Rankine-Hugoniot curve, corre- 
sponding, respectively, to w = 1 + 2j/a and w = 2 + 2( j  - ?)/(a + y - 1)  (or 
2 < w < i f o r j  = 2 and y = 1.4). 

In  the case of h $: 0 while w = constant, degenerate solutions occur when the 
B singularity coincides with a point on the Pc = 00 line, or when singularity A 
is situated at the CJ, point. The range within which singularity B has in this case 
to be contained is bounded by the CJ, point, for which now 

w = Z+(Zj-a)/2(y+I) and h = a/(y+l)--Z 

(or w = 55 and h = - 5 for j = 2 and y = 1-4), and the strong-shock boundary 
condition when 

w = Z+(Z j -a ) / ( y+I )  and h = 2a/(y+1)-2 

(or w = $ and h = for j = 2 and y = 1.4). The appropriate values for h have 
been deduced from the condition for the B singularity: P = ( A  + 2)/a. The weak 
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detonation branch of the Pa = co line, that is, the segment of this line below 
the CJ, point, is ruled out on physical grounds. Since a t  the CJ, condition y = 0, 
the point representing this state can coincide with an A singularity, when, unlike 
the previously discussed degenerate cases involving this singularity, h $: 0. 
Thus, from the expression for the position of the A singularity given in table 2 
and the co-ordinate of the CJ, point ( F  = I/(?+ 1) ,  2 = [y / (y+ 1)12), one finds 
that this can happen if w = 0 and h = &jy/(y+ I) ,  which for j = 2 and y = 1.4 
yields the aforementioned value of h = g, as noted on figure 12. 

Besides the degenerate solution represented by the CJ, point, there also exists 
a family of integral curves corresponding to h = that pass through this point. 
Although a full discussion of the properties of such ' variable-velocity Chapman- 
Jouguet detonations' has been considered to be outside the scope of the present 
paper, the solution for the most important one, namely that of a front-driven 
wave corresponding t o  the integral curve passing through singularity D, is 
shown in figure 12. This figure also includes the integral curve for h = 0 passing 
through the CJ, point. It represents the structure of a blast wave bounded by 
a strong Chapman-Jouguet front moving at a constant velocity. The end state 
of P = 0 and 2 = I is attained at a finite value of x, so that this blast wave has 
a core a t  rest. Under the conditions of figure 14 the front of the core is a t  a radius 
rc = 0*4874r,, while the pressure and density in the core are, respectively, 
pc = 0.2760pc, and pc = 0 . 3 9 8 7 ~ ~ ~ .  

Integral curves passing through the CJ, point for values of h in the interval 
0 < h < f have no physical meaning since they cross the D = 0 line. On the 
other hand, the integral curve for h = 0 shown in figure 12 bounds a family of 
similar curves passing through any point of the D = 0 line between the CJ, 
point and the weak discontinuity at 2 = I. They all pass through the point 
F = 0, Z = 1 since, for h = 0, it is the position of singularity A .  Points on the 
D = 0 line below the CJ, point are outside the regime of boundary conditions 
for waves propagating into an atmosphere at  rest and integral curves passing 
through them are considered to be outside the scope of the present paper. 

7. Summary and conclusions 
A comprehensive treatment of self-similar blast waves has been given here 

with respect to two parameters, one describing the trajectory of the front in the 
time-space domain and the other the variation in the density of the medium 
into which the wave propagates. Three fundamental cases have been covered: 
one corresponding to uniform-density atmosphere, the second to constant front 
velocity and the third to constant wave energy when the two parameters are 
interrelated algebraically. This comprehensive character has been attained 
primarily as a result of a more concise formulation of the theory than those of 
the authors of the many publications available on this subject. Thus, most of 
the known solutions have been correlated and their properties generalized, 
covering all the possible values of the aforementioned parameters that are of 
physical significance for waves propagating into a medium at rest with respect 
to their centres of symmetry. 
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Moreover, the analytical facility afforded by the simpler formulation permitted 
the determination of some particular properties which have not been recorded in 
the literature. The most important in this respect was a thorough investigation 
of the phase plane of the solutions defined in terms of the reduced co-ordinates 
P = (t/r,u) u and 2 = [(t/r,u) a12 defined above. This was accomplished by tracing 
the loci of extrema of the integral curws in this plane and of their intersections 
fixing the loci of singularities. In  this way the reasons for the occurrence of the 
singularities and the dependence of their position on the values of the two 
parameters could be fully explored. Hence, besides covering all the known cases 
of singular points, the existence of a number of singularities not yet singled out 
in the literature has been established. 

On this basis all the salient features of the wave structure have been deter- 
mined, covering the full range of physically meaningful solutions pertaining to  
shock fronts propagating into an atmosphere of uniform density, including the 
limiting cases of exponential and logarithmic front trajectories. Particular solu- 
tions in the phase plane for waves bounded by detonation fronts have also been 
obtained and all the degenerate solutions for which the integral curves on the 
phase plane are reduced to single points have been pinpointed. 

This work was supported by the United States Air Force through the Air 
Force Office of Scientific Research under Grant AFOSR 129-67, by the National 
Aeronautics and Space Administration under Grant NsG-702/05-003-050 and by 
the National Science Foundation under Grant NSF GK-2156. 
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